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Abstract

Fine-grained urban flow inference (FUFI) problem aims at in-
ferring the high-resolution flow maps from the coarse-grained
ones, which plays an important role in sustainable and eco-
nomic urban computing and traffic management. Previous
models addressed the FUFI problem from spatial constraint,
external factors, and memory cost. However, utilizing the new
urban flow maps to calibrate the learned model is very chal-
lenging due to the “catastrophic forgetting” problem and is
still under-explored. In this paper, we make the first step in
FUFI and present CUFAR — Continual Urban Flow inference
with Adaptive knowledge Replay — a novel framework for in-
ferring the fine-grained citywide traffic flows. Specifically, (1)
we design a spatial-temporal inference network that can ex-
tract better flow map features from both local and global lev-
els; (2) then we present an adaptive knowledge replay (AKR)
training algorithm to selectively replay the learned knowl-
edge to facilitate the learning process of the model on new
knowledge without forgetting. In addition, we also propose a
knowledge discriminator to avoid “negative replaying” issue
introduced by noisy urban flow maps. Extensive experiments
on four large-scale real-world FUFI datasets demonstrate that
our proposed model consistently outperforms strong base-
lines and effectively mitigates the forgetting problem. Source
code is available at: https://github.com/PattonYu/CUFAR.

1 Introduction

Fine-grained urban flow analysis, prediction, and inference
are important applications of smart city development and ur-
ban computing. They have been used for traffic management
and urban transportation planning (Cleophas et al. 2019;
Liang et al. 2022b; Zheng et al. 2014; Liang et al. 2019),
benefiting from the fast urbanization, vast data generated
from IoT devices, and the new computing technologies in
recent years (Zhong et al. 2022; Yu et al. 2022). However,
extensive resources such as electricity and manpower are
consumed for deploying and maintaining the system. Fine-
grained urban flow inference (FUFI), which tries to infer the
high-resolution flow map from the corresponding coarse-
grained one, is proposed as an important step toward an
environmental-friendly and sustainable urban traffic system.
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UrbanFM (Liang et al. 2019) is the first work formulates
the FUFI problem and proposes a distributional upsampling
module and an external factor fusing subnet for tackling the
problem. Subsequent works improve UrbanFM from sev-
eral important aspects, e.g., the spatial constraint, external
factors, and memory cost. Specifically, FODE (Zhou et al.
2020) and UrbanODE (Zhou et al. 2021) — based on neural
ordinary differential equations (ODEs) — are proposed to ad-
dress the numerical instability problem in FUFI by an affine
coupling layer and a pyramid attention network. MT-CSR
(Li et al. 2022) addresses the FUFI problem with incomplete
urban flow map. DeepLGR (Liang et al. 2020) revisits the
limitations of convolutional neural network (CNN) and tries
to learn global spatial dependencies and local feature rep-
resentations of the flow dynamics. UrbanPy (Ouyang et al.
2022) is the state-of-the-art FUFI model which extends Ur-
banFM by proposing a cascading strategy based on the pyra-
mid architecture, a propose-and-correct component, and a
new distribution loss.

Motivations. Despite the promising results achieved in
prior works, several potential improvements are worth ex-
ploring. First, although existing works have designed global-
local architectures such as pyramid mechanism (Ouyang
et al. 2022; Zhou et al. 2021), global-local context mod-
ule (Liang et al. 2020), and Transformer (Zhou, Zhou, and
Liu 2021; Liang et al. 2022a) to learn the long-range de-
pendencies between local regions at different granularity,
they are still inefficient in modeling the spatial relations of
urban flows while also considering the temporal flow dy-
namics. Second, prior methods learn each FUFI dataset in
isolation and retrain the entire model with the newly ob-
tained fine-grained urban flow maps, leaving the previous
data unexploited. One straightforward solution is to train
all the data at once. However, it has two drawbacks: (1)
noise data may be introduced from the older flow maps that
have different flow distributions; (2) the computation over-
head becomes unaffordable as time goes on. Another solu-
tion is to continually fine-tune the trained model from previ-
ous data on the new data, which is efficient and feasible to
take advantage of the learned urban flow knowledge. How-
ever, fine-tuning directly on the new data is very prone to the
“catastrophic forgetting” problem —i.e., much of the learned
knowledge is overridden upon learning the new knowledge



— mainly due to the parameter-updating mechanism (e.g.,
back-propagation), resulting in the model less generalized
and less robust. This is also a result of “stability-plasticity”
dilemma (Carpenter and Grossberg 1987).

Present Work. We present CUFAR: Continual Urban
Flow inference with Adaptive knowledge Replay, as a novel
way of inferring the fine-grained flow map with the help
of previously learned knowledge. Specifically, we design a
simple yet effective inference network that extracts spatial-
temporal flow map features from both local and global per-
spectives, enabling the model to infer more accurate flow
distributions. Then we propose a general adaptive knowl-
edge replay (AKR) training algorithm to continually and se-
lectively replay the old knowledge to facilitate the learning
process of the model on new data while also overcoming the
“catastrophic forgetting” problem. Moreover, we design an
adaptive knowledge discriminator to measure the flow distri-
bution difference before and after the knowledge replaying,
which helps the model mitigate the “negative replaying” is-
sue that may occur if noisy data are introduced.

Extensive experiments (including ablation study and
visualization) on four large-scale real-world urban flow
datasets demonstrate the effectiveness and robustness of
CUFAR over strong FUFI baselines. We have the following
notable findings: (1) the proposed spatial-temporal inference
network uniformly improved the FUFI performance on four
datasets, which has a better capability for learning expres-
sive flow map features. (2) the designed AKR training al-
gorithm successfully alleviated the “catastrophic forgetting”
problem in continual FUFI and consequently, improved the
inference performance. It is worth noting that all baselines
equipped with AKR have better performance. (3) interest-
ingly, on TaxiBJ-P4 dataset, we both observed the “nega-
tive replaying” and “overfitting” if the proposed knowledge
discriminator and AKR are removed, respectively. (4) com-
pared to the joint protocol, i.e., training all data at once, our
approach is efficient and even outperforms joint. We specu-
late this deficiency of joint is due to the noisy samples intro-
duced from previous data. The above findings verify our mo-
tivation and show that utilizing the prior knowledge (prop-
erly) to facilitate the learning process of current knowledge
is a promising way toward a robust and sustainable urban
transportation system.

2 Problem Formulation

We aim to infer the citywide fine-grained flow map from the
coarse-grained one. Given a city of interest, we divide the
city’s map M into grid-cells. For each cell, we record its
traffic flows z;; € Ry every 7 minutes. The overall traf-
fic flows of M are denoted as X. Following exiting works
(Liang et al. 2019; Ouyang et al. 2022), the FUFI problem
and its spatial constraint are defined as:

Definition 1. Fine-Grained Urban Flow Inference:
Given a coarse-grained map X4 € Rf *W the FUFI prob-
lem is to infer the corresponding fine-grained flow map
Xyg € Rj\_/HXNW, here N is an upscaling factor.

Coarse-grained flow map

Fine-grained flow map

Figure 1: Spatial constraint between coarse- and fine-grained
flow maps in a local area of Beijing city.

Definition 2. Spatial Constraint: Different from image
super-resolution, FUFI problem has to obey a spatial con-
straint that the cell flow x;; of the coarse-grained map is
strictly equal to the sum of flows in the corresponding N x N
cells of the fine-grained map, i.e.:

i’ | .
Lij,cg = in’j’,fg s.t. {NJ =1, LNJ =1 (1)

i/j/

where i = 1,2,...,Hand j = 1,2,...,W. An illustration
of the spatial constraint is depicted in Figure 1.

In traditional FUFI problem settings (Liang et al. 2019;
Li et al. 2020), the learning model is retrained entirely every
time new urban data comes in, which belongs to the offline
learning paradigm. Online learning, on the contrary, dynam-
ically and sequentially learns new data patterns, enabling an
efficient and sustainable prediction model that is also the
target of the FUFI problem. However, online learning algo-
rithms such as continual learning and fine-tuning may face
the challenge of catastrophic forgetting when adapting to
new data/tasks'. In this work, we study the continual FUFI
problem, i.e., given a sequence of urban flow datasets or-
dered over time, we learn new knowledge with the help of
old knowledge, but without forgetting the old knowledge.

3 Methodology

We now illustrate the CUFAR methodology which contains
two critical components: (1) an inference network consisted
of two feature extractors for learning the spatial-temporal
relations of urban flow maps from both global and local lev-
els; (2) a specifically designed continual algorithm that com-
bines the experience replay strategy with an adaptive knowl-
edge discriminator. The framework of the inference network
is depicted in Figure 2 and the continual algorithm is de-
scribed in Algorithm 1.

3.1 Spatial-Temporal Inference Network

Spatial Relation Extraction. Urban road topological
structures and the corresponding temporal flow dynamics
are extremely complex and cannot be parsed with sim-
ple rules. With the help of CNNs, previous FUFI methods
(Liang et al. 2019; Zhou et al. 2020, 2021) learn global

"When there is no ambiguity, we interchangeably use data and
task throughout the paper.
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Figure 2: The framework of the proposed inference network. It first extracts global-local map features from the coarse-grained
flow map along with external factors such as weather and date. Then extracted flow map features are combined with temporal
features and a /N 2-Normalization layer to infer the final fine-grained flow map.

feature maps with shared kernel weights to infer the fine-
grained flow map. As a result, these methods are inefficient
to model the local area flow dynamics. To address this hur-
dle, we design a spatial relation extraction module to par-
tition the flow map into smaller local regions and use sev-
eral standalone sub-models to separately infer the upscaled
local maps. Specifically, for H'W’ sub regions, each sub-
model is consisted of two convolution layers followed by
a PixelShuffle layer and an independent component (IC)
layer. The first convolution layer has F' filters (3x3) and the
second has F'N? filters, recall that N is the upscale fac-
tor. The PixelShuffle layer upscales the coarse-grained fea-

ali H oW 2 .
ture maps Hix®! € Ru7*w? *EN" to fine-grained ones
NH

H“Y e R AP The IC layer (Chen et al. 2019)
is composed of a batch normalization layer and a dropout
layer. It can whiten the mutual information and correla-
tion coefficients between network neurons and accelerate
the speed of convergence. The global model is similar to
the local sub-model but has a larger filter size (9x9) in the
first convolution layer. Its output is the global fine-grained
feature maps H?;bal € RVHXNWXFE \We then restore the
undivided feature maps H'?®' € RNFXNWXE from Jo-
cal feature maps. At last, we concatenate the obtained fea-
ture maps as the input of the temporal feature extractor:

_ global | yylocal NHxXNW x2F
Hy, = [ Hy] e R .

Temporal Features Extraction. Various external condi-
tions such as weather and date have an influence on the dis-
tribution of citywide urban flows. Among them, time span is
closely related to flow volumes but largely ignored or dealt
as a normal external condition. To remedy this, we propose
a temporal feature extraction module based on convolutional
sequences to capture the influence of time factor on the traf-
fic flow distribution. Specifically, we build K independent
convolutional layers (F" filters, 3x3), each account for a spe-
cific time span in a day. The weights of these layers are non-
shared. Then the fine-grained feature maps H, are fed into
the corresponding convolutional layer followed by a N2-
Normalization layer to obtain the desired fine-grained flow

map X, € RVIXNW,

External Factors and N2-Normalization. As same as
the one in UrbanFM (Liang et al. 2019), we adopt several
embedding layers to transform the external factors (except
the time span factor) into low-dimensional vectors and then
use dense layers to reshape the vectors into a coarse-grained
feature map. Thereby, the input of our model is the concate-
nation of the coarse-grained flow map, external feature map,
and time span feature map. To obey the spatial constraint re-
quired by FUFI problem, existing methods often adopt the
N?2-Normalization as model’s last layer instead of adding
new losses. In CUFAR, we also use this normalization trick.
The details of the external factors and N2-Normalization
can be found in UrbanFM (Liang et al. 2019).

Optimization. The training objective of CUFAR is the
widely used mean squared error (MSE) between the inferred
flow map and the ground truth:

L= Hifg_xngg- 2

Next, we illustrate how we adaptively and continually learn
new knowledge without forgetting the old knowledge.

3.2 Adaptive Knowledge Replay

When we use the newly obtained urban flow maps to cali-
brate the trained model in FUFI (we denote this process as
learning on a task), e.g., fine-tuning on the new data, the
learned knowledge tend to be overridden by the new knowl-
edge due to the parameter-updating mechanism (e.g., back-
propagation), resulting catastrophic forgetting that lowers
the inference performance. In this work, we propose an
adaptive knowledge replay (AKR) training method that con-
tinually and selectively replays the old knowledge to help the
learning process of the new task. AKR consists of a memory
buffer and an adaptive knowledge discriminator.

Selective Memory Buffer. Prior works (Lopez-Paz and
Ranzato 2017; Buzzega et al. 2020; Riemer et al. 2019) show
that one effective way to overcome catastrophic forgetting is
the experience replay, which saves the old data in a mem-
ory buffer and does not constrain the optimization process.



Inspired by experience replay, we use a memory buffer M
to reserve the learned urban flow maps from previous tasks,
which has a max size S. In every training iteration, we ran-
domly sample a buffer mini-batch By from M. The sam-
pled B is then merged with the original training batch
B. Different from existing experience replay-based methods
(Buzzega et al. 2020; Riemer et al. 2019), our designed se-
lective memory buffer (1) does not retrospect current train-
ing data and (2) contains a sub-memory buffer Mgy, of size
S/2 for storing recent data on the new task. Specifically, dur-
ing the training on the first task, buffer M is filled and then
updated by the reservoir sampling algorithm (Vitter 1985).
During the training of subsequent tasks, the sub-memory
buffer Mg, replaces the role of the M, i.e., we update My,
with the new data and replay the old data from M. Every
time we train on new task, half of the data in M is randomly
replaced by the data (from the last task) in M. Therefore,
the buffer M has more recent samples.

Adaptive Knowledge Discriminator. When replaying
past data from the memory buffer M, if the distribution
of replayed urban flow maps greatly differs from the origi-
nal distribution, “negative replaying” may occur. To mitigate
this deficiency, we further introduce a maximum mean dis-
crepancy (MMD) (Gretton et al. 2012) to measure the sim-
ilarity between the replayed distribution and original distri-
bution. MMD is often used in domain adaptation and trans-
fer learning to measure the domain distance and constrain
the representation space (Liu et al. 2020; Binkowski et al.
2018; Arbel et al. 2018). We use MMD as a distance dis-
criminator to prevent our model being affected by the out-of-
distribution flow maps (e.g., unusual traffic flow distribution
due to road accidents or lockdowns). Given two distributions
— in our case the replayed samples X' from the merged
batch and samples Xgrgi in the original batch — the MMD dis-
tance is defined as:

deﬂXEMKXE)=§3%EUGW—4ﬂﬂQH% ©)
where P ~ X5 Q ~ X0, and H indicates reproduc-
ing kernel Hilbert space (RKHS). We define two kernel em-
beddings p, := E[K(-,P)] and p, := E[K(:,Q)], here
K(-,-) € H. Then the MMD distance can be derived as:

2
daup (X™. X05) = | sup (pp — 1g: f)y | @)
[FAEAS!

2 2
< sup ||Np - Nq”q.[ ||f||%—[ = HMp - MqHH .

Ifllx<1
Since the above equation cannot be computed directly, we
expand the kernel function and draw i.i.d. samples P =
{p:} ™, from X and Q = {g;}7—, from XZ. Then the
squared MMD can be estimated as follows (Gretton et al.
2012; Binkowski et al. 2018):

mom

dynp (P, Q) = m S k(pip)) (5)
i=1 j#i
1 n m n
+m;§k 4i: 45) —72;k pir4;)

Algorithm 1: Adaptive Knowledge Replay (AKR)

Input: A sequence of tasks {71, 75, ...} containing coarse- and
fine-grained flow maps X4 and X, buffer M and M.
1: M — ®7Msub — @7
2: for TZ in {T1,T2, . } do
if 7' then
for sampled mini-batch B = {(X?

3

4 L, X% )2 do
5: Fill M using the reservoir samphng algorlthm
6: for Xcg € Bdo

7: XJ < Model(XZ,);

8

9

end for

: 0+ MSELOSS({ng, X}Q}LB ‘1) > Updating
10: end for
11: else > Starting to replay knowledge
12: if My # @ then
13: Replace half of M with M and set Mg, = &
14: end if
15: for sampled mini-batch B = {(X‘f‘} J X"" J)}‘B‘ do
16: Fill My, using the reservoir samplmg algorlthm
17: Sample B from the buffer M,
18: B = (X X)L« BU B
19: a < dip (B™™, B), 0 « 0;
20: for X[P7 € B"PY do
21: XTI = Model (XEP™7);
22: end for -
23: 61 < MSELoss({ X[ X Pd 3 B,
24: 0« 0o+ ax (01— 90) > Updating
25: end for
26: end if
27: end for

The range of dipp is [0, +0c]. We then normalize the dis-
tance into (0, 1] by:
2
=2 - — 6
@ 1+ eidl%/[MD ©)
The larger the «, the higher the similarity, and & = 1 in-
dicates that the two sample groups are identical. When re-
playing the learned knowledge on new tasks, for each train-
ing iteration, let 6 be the initial weights, 61 be the trained
weights, the final model weights 6 are updated as:

0:90—1—@*(01—90). (7)

The overall training process of the proposed adaptive knowl-
edge replay is sketched in Algorithm 1.

4 Experiments

We now evaluate the effectiveness of our proposed spatial-
temporal inference network and adaptive knowledge replay
on continual FUFI problem. Experiments are conducted on
four real-world taxi traffic datasets collected continuously
for four years (2013 to 2016) in Beijing (Liang et al. 2019).
We denote the four datasets as TaxiBJ Task-1 to Task-4.

Baselines. We compare CUFAR with the following ten
methods on FUFI problem. They include five single image
super-resolution approaches: SRCNN (Dong et al. 2015),
VDSR (Kim, Lee, and Lee 2016), ESPCN (Shi et al. 2016),
SRResNet (Ledig et al. 2017) and DeepSD (Vandal et al.



Method Task-1 Task-2 Task-3 Task-4
MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

SRCNN 18464 2491 0.714 21.270 2.681 0.689 23.184 2.829 0.727 14.730 2.289  0.665
ESPCN 17.690 2497 0.732 20875 2727 0.732 22505 2862 0.773 13.898 2.228  0.711
VDSR 17.297 2213 0467 21.031 2498 0486 22372 2548 0.461 13.351 1.978 0411
DeepSD 17.272 2368 0.614 20.738 2.612 0.621 22.014 2739 0.682 15.031 2297 0.652
SRResNet 17.338 2457 0.713 20466 2.660 0.688 21996 2.775 0.717 13.446 2.189  0.637
UrbanFM 16.372 2.066  0.335 19.548 2284 0328 21.243 2398  0.336 12.744  1.850  0.311
DeepLGR 17.125 2.103  0.339 21217 2386 0.350 23.563 2497 0.351 13.390 1916 0.345
FODE 16.473 2.142  0.403 19.884 2377 0395 21425 2490 0.417 12.840 1947 0.396
UrbanODE  16.342 2.135  0.406 19.648 2.357 0394  21.177 2460  0.408 12.668 1.929 0.391
UrbanPy 16.082 2.026  0.329 19.025 2.232 0318 20.810 2.333  0.313 12.336 1.810 0.304
CUFAR 14991 1952 0306 18.259 2.186 0.301 19.309 2.243 0.289 11.681 1.758 0.288

Table 1: Inference performance on four TaxiBJ datasets when using the single-task protocol. Results of the five single image

super-resolution baselines are from (Liang et al. 2019). The best results are marked in bold.

Method Task-2 Task-3 Task-4
MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

UrbanFM 19.162  2.257 0.322 20.499 2.341 0.325 12.285 1.814 0.314
« DeepLGR 20.571 2336 0334 21.845 2427 0345 12820 1.858 0.318
E FODE 19.251 2323 0379 20.511 2410 0387 12414 1.895 0.369
§ UrbanODE 19.070 2302 0371 20.275 2375 0372 12.182 1.862 0.361
%, UrbanPy 18.822 2208 0317 20.117 2293 0314 12.088 1.800 0.307
CUFAR 17.746 2151 0.293 18915 2219 0.287 11.486 1.745 0.290
UrbanFM 18.477 2.215 0.312 19.809 2.290 0.314 11.919 1.778 0.302
< DeepLGR 19.202 2292 0342 19.892 2331 0330 11977 1.819 0.314
§ FODE 18.799 2.297 0.370 20.012  2.369 0.373 11.997 1.852 0.359
S UrbanODE 18.735 2289 0374 19.779 2.340 0.361 11.924 1.836 0.352
3 UrbanPy 18.286 2.193 0.311 19.503 2.264 0.314 11.958 1.787 0.304
CUFAR 17.616 2.141 0.292 18.840 2.213 0.285 11.420 1.735 0.283

Table 2: Performance comparison between fine-tune and continual protocols. All models are initially trained on Task-1. Then
each model is fine-tuned on new tasks. Continual indicates our designed AKR is applied. Best results are in bold.

2017); and five state-of-the-art FUFI approaches: UrbanFM
(Liang et al. 2019), DeepLGR (Liang et al. 2020), FODE
(Zhou et al. 2020), UrbanODE (Zhou et al. 2021) and Ur-
banPy (Ouyang et al. 2022).

Training Protocols. We use four training protocols.
Single-task learns each task in isolation. Joint learns previ-
ous tasks and new task at once, which costs a lot of compu-
tations when there are many tasks. Fine-tune and continual
learn new task with the help of previous task(s), but do not
require retraining on them.

Implementation. We use commonly used FUFI metrics
including mean squared error (MSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE). All
experiments are conducted on RTX 3090 with PyTorch. The
optimizer is Adam, learning rate is le~4, filter size F is 128,
temporal conv layers K is 15 (hourly from 9AM to 12PM),
memory buffer size S is 1,000, batch B and B’s sizes are
16 and 2, respectively. The resolution of the flow map X,
is 128x128, the upscaling factor N is 4.

4.1 Evaluation Results

Spatial-Temporal Inference Network. Table 1 shows the
inference performance of our model and ten baselines on
four tasks using the single-task protocol, i.e., we infer the
fine-grained urban flow without fine-tuning or knowledge-
replaying on the new task. We can observe CUFAR achieves
the best results through all metrics on all tasks, which veri-
fies the effectiveness of our designed spatial-temporal infer-
ence network.

Adaptive Knowledge Replay. Next, we evaluate the pro-
posed AKR training algorithm and see if we can mitigate
catastrophic forgetting while also improving the inference
performance. Since image super-resolution methods per-
formed poorly, we omit them in the remaining experiments.
We apply AKR on all FUFI methods (denoted as contin-
ual) and the results are shown in Table 2. The comparison
shows that continual-based models consistently outperform
fine-tune-based models, supporting our motivation that over-
coming catastrophic forgetting is vital for the FUFI prob-
lem. In addition, fine-tune and continual both considerably
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Figure 3: Visualization of catastrophic forgetting phenomenon. Lines are validation losses (MSE). Each row represents a task.
Each column represents a training stage. Each stage we train the model on current task (by fine-tune or continual protocol) and
validate the model on current task and (if any) previous tasks. As we continuously learn on new tasks, the performance of the
fine-tune model on previous tasks drops severely due to catastrophic forgetting, while continual largely alleviates this issue.
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Figure 4: Ablation study results in terms of MSE.

outperform single-task (compare the results of Table 1 and
Table 2), which suggests that utilizing the knowledge from
previous tasks is an effective way to boost the performances
of models on new tasks. Interestingly, UrbanFM with con-
tinual fought back to surpass the UrbanPy on Task 4.

Catastrophic Forgetting. To better visualize the forget-
ting phenomenon on new tasks, we show the training pro-
cess of our model by using fine-tune and continual protocols
in Figure 3. We have the following findings. For fine-tune
model, its performances on old tasks are severely degener-
ated, an obvious consequence of the ‘“catastrophic forget-
ting”. The older the task, the more knowledge it forgets.
For continual model with our designed AKR algorithm, it
successfully alleviates the forgetting problem when learning
new tasks. In addition, the fine-tune model also faces the
overfitting issue on Task-4 at Stage-4 (the validation loss
starts to rise), and beyond our expectation, the continual
model performs surprisingly well. This result suggests an-
other potential benefit of the ARK algorithm.

4.2 Experimental Analysis

Ablation Study. To investigate the contributions of each
component in CUFAR, we conduct ablation studies on the
following four variants of CUFAR:

* w/o SE: removing the spatial relation extractor.
* w/o TE: removing the temporal feature extractor.
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Figure 5: Comparison between joint and continual (ours)
protocols in terms of convergence time and inference error.

* w/o AKR: removing the adaptive knowledge replay, i.e.,
we use fine-tune protocol.

* w/o MMD: removing the maximum mean discrepancy.

Figure 4 shows the ablation results and we have following
remarks: (1) The spatial and temporal feature extractors in
CUFAR contributes the most. The combination of the two
extractors (i.e., the single-task model) is superior than either
of them alone, demonstrating the effectiveness of the de-
signed inference network. (2) The results of CUFAR along
with CUFAR w/o MMD show that the knowledge learned
from previous tasks can significantly improve the FUFI per-
formance. Besides, the designed MMD distance in AKR
avoids the “negative replaying” issue and enhances the ro-
bustness of the algorithm (as the results of Task-4 show).

Joint Protocol. Training all current and previous tasks si-
multaneously is often considered to be a powerful approach
and serves as a soft upper bound of performance (De Lange
et al. 2021). However, as we show in Figure 5, joint train-
ing has two main shortcomings: (1) when there are too many
tasks, the computation overhead becomes unaffordable, e.g.,
Jjoint spends 3x more training time than CUFAR on four
tasks. (2) noisy data introduced from older tasks may hinder
the inference performance if no selection strategy is applied.
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Figure 7: Error visualization.

We can see from the figure that CUFAR equipped with AKR
surpasses its joint counterpart on Task-3 and Task-4.

Convergence Analysis. Figure 6 shows the validation loss
(MSE) during the training phase of CUFAR and baselines
on all tasks. Our model converges smoother and faster than
baselines while also having the lowest validation losses. For
ordinary differential equation (ODE)-based models FODE
and UrbanODE, their loss curves oscillated drastically, prob-
ably because of the gradient explosion that occurs when
solving the ODE functions. UrbanPy, an extension of Ur-
banFM, employs a cascading strategy that progressively up-
samples the coarse-grained flow map, outperforming other
baselines. It is worth mentioning that all baselines are less
stable on Task-3. This result may be explained by the fact
that the flow volumes in TaxiBJ-P3 are larger than in other
tasks. Surprisingly, the loss curve of CUFAR keeps steady
and smooth as well as on other tasks.

Error Visualization. Figure 7 shows the inference errors
|[X g — Xyg||?> of three models on a case flow map, the
brighter the pixels, the larger the errors. We can observe that
the CUFAR has much less brighter pixels than UrbanPy.
On certain areas, e.g., the road to Beijing Capital Inter-
national Airport (the top right corner), CUFAR’s inferred

fine-grained flow map is more accurate than the single-task
model.

5 Related Work

Overcoming the catastrophic forgetting in artificial neu-
ral networks is attracting numerous research attention
(De Lange et al. 2021) due to its significance for a dy-
namic system that has new data/tasks coming continuously.
Continual learning aims to model a sequence of new tasks
without forgetting the knowledge of past tasks, which is a
promising direction towards sustainable and robust neural
networks (Qu et al. 2021; Mai et al. 2022). Early efforts
on continual learning can be categorized into three types.
(1) Regularization-based methods impose restrictions when
learning a new task to mitigate catastrophic forgetting. They
use specific loss functions to take these constraints on the pa-
rameter updating process and consolidate previously learned
knowledge (Mai et al. 2022; Li and Hoiem 2017; Kirkpatrick
et al. 2017). (2) Parameter isolation methods dedicate dif-
ferent model parameters to each task to prevent any possible
forgetting (De Lange et al. 2021). When no constraints are
applied to the size of the architecture, one can grow new
branches for new tasks while freezing the parameters of the
old task or provide a model copy to each task (De Lange
et al. 2021; Serra et al. 2018; Aljundi, Chakravarty, and
Tuytelaars 2017). However, above mentioned two types of
methods face several drawbacks. First, they often impose
constraints when learning new tasks, which limits the gen-
eralizability of the model; Second, they cannot utilize the
knowledge from old tasks to improve new task performance.
(3) Replay-based methods save the data of previous tasks
in a memory buffer. When learning new tasks, they replay
the samples from the buffer and then mitigate the catas-
trophic forgetting of previous tasks (Buzzega et al. 2020).
Compared to other continual methods, replay-based meth-
ods do not constrain the new task optimization to prevent
the interference of previous tasks, and they are more suitable
for FUFI. Motivated by replay-based methods, we design an
adaptive knowledge replay algorithm for selectively replay-
ing the knowledge from previous tasks and finally improving
the FUFI performance on new tasks.

6 Conclusions

In this work, we presented CUFAR, a novel continual frame-
work for fine-grained urban flow inference. We propose to
utilize the learned knowledge from previous tasks to en-
hance the learning process of the model on the new task. We
designed a spatial-temporal inference network and a gen-
eral adaptive knowledge replay training algorithm that helps
the model alleviate “catastrophic forgetting” and “negative
replaying” issues when adapting to new urban flow maps.
Extensive experiments on four large-scale real-world FUFI
datasets demonstrated the effectiveness and robustness of
CUFAR over state-of-the-art baselines.

In our future work, we plan to investigate (1) extending
our solution to other urban flow applications/datasets. (2)
finding new ways to selectively replay the old samples that
are beneficial for the new task with a theoretical guarantee.
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